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A [1,5] sigmatropic hydrogen-transfer process1 must possess 
a six-membered pericyclic2 transition state (TS*) in accordance 
with the requirements of orbital symmetry conservation.1 The 
validity of this regulation has been repeatedly confirmed3 for 
retroene reactions in which either an O-H or a C-H bond has 
undergone suprafacial, linear hydrogen transfer to a carbon center 
in the pericyclic array. The criterion applied to assess the oc­
currence of concerted, linear H transfer was the temperature 
dependence of the primary H-D isotope effect.4"11 Consistent 
with transition-state-derived theory,12 a symmetrical or concerted13 

TS* will tend to exhibit an activation-energy difference between 
corresponding H and D bonds equal to their ground-state zero-
point energy difference, i.e., [A£a]o =* [A£ 0 ]D , and a frequency 
factor ratio of no greater value than 21/2, or, as established by 
model calculations,14 0.7 << AH/AD « 1.2. Nonetheless, ex­
amples can be found in the literature where a 1,5 sigmatropic 
rearrangement of hydrogen has been depicted with a TS* of 
nonlinear H-transfer. 

An exemplary case in point is that of the rearrangement of the 
pentadiene 1 shown15 in eq 1, in which the temperature dependence 
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of kH/kD has been determined over a considerable temperature 
range, and the isotope effect parameters are reported to be [AiJ3]" 
=* 1.4 kcal/mol and AH/AD = 1.15. When corrected for the 
a-secondary deuterium isotope effects, these values are closely 
coincident with expectations for a concerted, linear H-transfer 
mechanism. However, the authors15 represented this pericyclic 
process with a bent TS* (2) in eq 1. Though they took note of 
the symmetry features of the TS* in keeping with the isotope effect 
results, they failed to recognize that these results also demanded 
a linear H-transfer TS*. Apparently, the acyclic structure of 
conjugated double bonds in their cisoid conformation is capable 
of sufficient distention to permit linear H transfer, the mini­
mum-energy configuration of this sigmatropic TS*, as shown in 
3. The present investigation was undertaken with the objective 

of identifying a [1,5] sigmatropic rearrangement occurring in a 
cyclic system which is not capable of such distention of the w 
framework. 

The case chosen for study was the rearrangement of the 9a//-
quinolizine (4) to the 4//-quinolizine (5) expressed in eq 2. The 

(2) 

Where E =-COOMe 

temperature dependence of the isotope effect was again applied 
as the criterion of TS* geometry in H transfer. It has frequently 
been demonstrated, though not directly derivable (at present) from 
conventional transition-state theory of the isotope effect,12 that 
a bent TS*, i.e., one involving H transfer at an acute angle, can 
be correlated with a temperature-independent kH/kD. That is to 
say, the finding of isotope effect parameters of [Af3]" ^ 0 and 
AH/ A0 » 1.2 has been empirically shown17 to be most congruent 
with a bent TS*. 

The manner in which the isotope effect data for the reaction 
of eq 2 have been run, as well as the data gathered in these 
experiments, is presented in Table I. The determination that 

(15) Roth, W. R.; Konig, J. Liebigs Ann. Chem. 1966, 699, 24. 
(16) Acheson, R. M.; Taylor, G. A. J. Chem. Soc. 1960, 1691. 
(17) For further discussion see ref 10 and other references cited therein. 
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Table I. Temperature Dependence of ^ H / ^ D m t n e Sigmatropic Rearrangement of 9a/7-Quinolizine (4) to Its AH Analogue (5): Eq 3 

sample 
desig­
nation 

1 

3 
5 
7 

9 
11 
13 
15 
17 
19 
21 
23 
31 
32 
33 

temp, 
0C 

66.2 

66.2 
66.2 
80.85 

80.85 
80.85 
98.15 
98.15 
98.15 

126.6 
126.6 
126.6 

reaction, 
% 

30.8 

54.1 
67.6 
28.5 

38.8 
54.9 
38.5 
57.2 
65.8 
73.8 
80.8 
89.3 

0.0 
0.0 
0.0 

" I L M H 

0.2082 ± 0.0002 

0.2064 + 0.0001 
0.2050 + 0.0003 
0.2054 ± 0.0002 

0.2046 + 0.0003 
0.2039 ± 0.0003 
0.2063 ± 0.0002 
0.2054 ± 0.00003 
0.2049 ± 0.0002 
0.2081 + 0.0003 
0.2065 + 0.0002 
0.2049 ± 0.0002 
1.0429 + 0.002 
1.0307 ±0.0031 
1.0350 + 0.0029 

reciprocal 
^ H M L 

4.803 + 0.005 

4.846 + 0.003 
4.879 ± 0.0072 
4.869 ± 0.005 

4.887 ± 0.001 
4.905 ± 0.006 
4.849 ± 0.047 
4.869 + 0.0006 
4.881 ±0.005 
4.805 ± 0.007 
4.844 ± 0.004 
4.881 ± 0.005 

starting 
m H / w L 

0.9589 
0.9702 
0.9662 

± 0.0002 
+ 0.0029 
+ 0.0029 

k-alk-Q 
(at 100%) 

4.942 + 0.012; 
cc = 0.9970 

4.967 ±0.008; 
cc = 0.9904 

4.920 ±0.013; 
cc = 0.9980 

4.934 ±0.012; 
cc = 0.9976 

k-nlk-Q 
(con)a-b 

5.095 + 0.012 

5.121 ±0.008 

5.131 ±0.013 

5.107 ±0.012 

a The computed value of the isotope effect at each temperature is corrected for the deviation from a 50:50 mixture of the starting material 
proceeding to the (extrapolated) product composition. The corrected value of k-^lk-Q is therefore the value in column seven divided by the 
appropriate value in column six. b Mean ^HM - D = 5.113 ± 0.016. 

W ^ D is temperature independent over a ca. 65 0C range of study 
of this reaction and that AB/AD has a value of 5.11 is consonant 
only with angular H transfer. The only plausible formulation in 
keeping with the structural restraints imposed by the six-membered 
pericyclic TS* is represented by the orbital diagram in 6. 

Orbital Diagram 

This value of AH/AD is the largest found thus far among a 
variety of bent H-transfer transition states identified by means 
of the temperature dependence of the isotope effect criterion.6'8"10 

It suggests that a far greater probability here attends the reaction 
of hydrogen compared to deuterium. This can be best understood 
as a consequence of the higher energy bending vibration ampli­
tudes18 of the H and D experienced in the course of approaching 
the reaction TS*. When the bending vibration modes of (say) 
an C-H bond are far from their equilibrium configurations, they 
become inseparable and undergo facile energy exchanges, the 
circumstances of the higher energy bending vibration amplitudes 
of hydrogen compared to deuterium create a more efficient means 
by which the hydrogen pumps energy from a nonreactive mode 
into the reaction coordinate mode. The same situation does not 
obtain in linear H transfer because the higher frequency stretching 
vibrational modes are still quite separable. 

The large, temperature-independent &H/A:D found here for a 
reaction in which H transfer can only occur at an angle of less 
than 180° must be regarded as experimental verification of the 
TDKIE criterion for a bent TS. Moreover, O'Ferrall19 has re­
ported detailed model calculations that show that at a constant 
(single) temperature, i.e., where any temperature-dependent factor 
in kK/k0 is inoperative, the isotope effect is a steep function of 
this angle. Consequently, TS theory, which is the basis of these 
model calculations, has been shown to support the thesis that the 
temperature-independent component of kH/kD, namely An/A0, 
is directly relatd to the angle of H transfer in the TS. Using these 
calculations and results for a typical C-H bond transfer, where 

(18) Mayer, J. E.; Mayer, M. G. "Statistical Mechanics", 2nd ed.; Wiley: 
New York, 1977, p 218 bb. 

(19) More O'Ferrall, R. A. J. Chem. Soc. B 1970, 785. 

^ H M D = 5.1 (in the eq 2 process), we estimate the angle to be 
approximately 145°. 
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Although the electron-deficient structure R-Mg-X (where X 
= R, halogen, etc.) is commonly written for organomagnesium 
compounds, magnesium is usually bonded to four or more groups.2 

The extra bonds at a magnesium that reduce its electron deficiency 
are ordinarily to donor atoms (usually O or N) of solvent molecules 
or to bridging groups (R or X) that are bonded to another 
magnesium. As part of an effort to develop a greater under­
standing of the effects of the extent and nature of this additional 
bonding on the reactions of organomagnesium compounds, we have 
discovered that 15-crown-5 significantly affects some reactions 
of dialkylmagnesium compounds.3 

As shown by the data in Table I, addition of 15-crown-5 ac­
celerated metalation of fluorene (FlH, eq 1) by a tetrahydrofuran 

Et2Mg + FlH — Fl" +MgEt -I- EtH (D 

t Dedicated to Professor W. von E. Doering on the occasion of his 65th 
birthday. 

(1) This work is taken from: King, B. A. Ph.D. Dissertation, The Penn­
sylvania State University, University Park, PA, 1981. 
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0002-7863/82/1504-4672S01.25/0 © 1982 American Chemical Society 


